
Fault Tolerance in Space with Heterogeneous Hardware:
Experiences from a 68-day CubeSat Deployment in LEO

Ahmed El Yaacoub
Uppsala University

(Sweden)
ahmed.el.yaacoub†
†@angstrom.uu.se

Thiemo Voigt
Uppsala University & RISE

(Sweden)
thiemo.voigt†

Philipp Ruemmer
University of Regensburg

(Germany)
philipp.ruemmer@ur.de

Luca Mottola
Uppsala University & RISE
(Sweden), Politecnico di

Milano (Italy)
luca.mottola@polimi.it

Abstract
We report on our experience deploying a CubeSat to study fault
and error distributions against different fault tolerance schemes
when using Common Off-The-Shelf (COTS) hardware in Low-Earth
Orbit (LEO). Space radiation commonly causes faults in COTS hard-
ware, such as bit flips in memory, which can lead to errors in a
program’s execution. Fault tolerance techniques can prevent faults
from turning into errors. Accurately quantifying the fault and error
distributions is vital for choosing an appropriate fault tolerance
scheme. We equip the CubeSat with heterogeneous hardware com-
bining a regular System on a Chip (SoC) with programmable logic
resources. Based on in-orbit experiments and post-processing of
logs, we check the validity of two fault models. We find the single
fault model to be valid, encouraging the use of techniques such as
triple modular redundancy. We also demonstrate, however, that
the single-bit error fault model is not valid, which means that com-
mon techniques such as Hamming (7,4) codes should not be used.
We observe that most errors are short-lived, allowing simple re-
executions to correct them. Contrary to intuition, we also conclude
that floating-point encodings are more appropriate to build fault-
tolerance schemes in our setting, due to faults being easier to detect
than in their integer counterparts. Our insights confirm existing
findings in the literature while also providing new ones, while pro-
viding a foundation to conceive fault tolerance schemes for COTS
hardware deployments in space.

CCS Concepts
•Computer systems organization→Redundancy; •Hardware
→ Fault models and test metrics.

Keywords
fault tolerance, FPGA, satellite, heterogeneous hardware

1 Introduction
Outer space is challenging for electronics [34]. Ionizing particles
from radiation cause faults such as bit flips in memory that may, in
turn, cause errors that manifest as undesired deviations in program
execution. These may impact program correctness against stated
specifications [37], possibly leading to program failure [30].

The design and implementation of a fault-tolerant system [30],
that is, one where faults do not turn into errors, must be verified
against specific fault models. A fault model represents what faults
can occur, where, and when [42]. A system is said to be fault-
tolerant for a specific fault model if the faults described by that
model do not cause errors [30]. After deployment, however, if faults

do not abide to the considered fault model, the system cannot
provide guarantees on correct execution.
Challenge and goals. With the recent rise of COTS hardware
deployments in space, and particularly in low-earth orbit (LEO) [14],
the question arises as to what is the most appropriate fault model.
We answer this question experimentally, by designing and building
an experimental platform in the form of a CubeSat we deploy at
732 km from the Earth. The satellite carries heterogenous hardware
including a regular multicore SoC coupled to programmable logic
(PL) resources. Devices with PL, such as field-programmable gate
arrays (FPGAs), are emerging targets for space applications [13] and
also allow for parallel execution. The SoC allows for data gathering
and also doubles as a reference point to compare the outputs of the
PL executions. Our goal is twofold:

(1) We aim to verify the validity of existing fault models in LEO
deployments.

(2) We seek to measure the error distributions of different fault-
tolerance schemes.

The latter may serve to build an appropriate fault model, in case
existing ones turn out not to be valid.
Methods and findings. Verifying the validity of a fault model may
be achieved by deploying a fault-tolerant system with respect to a
fault model and measuring faults and errors [42].

To achieve the first goal, we deploy aboard the CubeSat a fault-
tolerant FFT implementation using a Triple Modular Redundancy
(TMR) [52] scheme that assumes the single fault model. TMR achie-
ves fault tolerance by triplicating functional units and using ma-
jority voting to detect and correct faults. The single fault model,
which is widely used in existing literature [10, 15, 24], states that at
most one fault can occur at a time. We also analyze the single-bit
fault model, which states that only one bit may be faulty at any
given time in any computing unit, by post-processing fault and
error distributions as represented in the data from the CubeSat. We
find the single-bit fault model to be not valid, but find the single
fault model to be valid. This information is key to determine the
fault tolerance scheme to use in a given deployment.

We achieve the second goal by observing where and how often
faults and errors occur for several configurations and settings:

• We compare the error distributions of using TMR against
not using TMR, and also compare different TMR voter
strategies, with a focus on bit-wise and word-wise voting.
We find little difference between the two since they are
both fault-tolerant with respect to the single fault model,
which we demonstrate to be valid.

• We compare the error distributions of different data encod-
ings, including floating-point and integer encodings, and

El Yaacoub et al.

observe that floating-point ones are more resilient to faults,
and that the errors they produce are easier to detect.

• We compare the error distributions of an algorithm imple-
mentation in C on the regular SoC and the same algorithm
implemented with PL resources. We note little difference
between the two in terms of fault tolerance. However, we
note that errors do not occur during execution but once
data is read back from memory, which explains why the
two implementations show similar error rates.

• We consider the use of Error Correction Code (ECC) mem-
ory to store output data to determine whether it presents
a significant reduction in errors. We do not observe any
errors in both cases, since we conjecture that faults occur
after the data was obtained from memory.

Contribution.We collect a total of 68 days of experimental data,
accounting for a total of 31,713,044 outputs. Our analysis provides
unique insights into how space radiation impacts the operation of
COTS hardware. In particular, we primarily observe that

(1) The single fault model TMR schemes build upon is valid in
our setting; we find no cases of two or more units experi-
encing faults within the same execution run.

(2) The single-bit fault model is not valid and fault tolerance
schemes based on that are not viable; we find multi-bit flips
to be far more frequent than single-bit flips.

(3) Faults are primarily short-lived; in the absence of strict
real-time requirements, re-executions that are sufficiently
spread over time may naturally correct the faults.

(4) Faults affecting the floating-point data cause much smaller
or much larger errors than faults affecting integers; contrary
to intuition, this makes errors in the former easier to detect.

The remainder of the paper unfolds as follows. Sec. 2 provides
background information and surveys related work. Sec. 3 illustrates
the experiment design, implementation, and space deployment.
Sec. 4 reports on the outcomes of the study through a series of
key observations. Sec. 5 offers lessons we learned in the process of
deploying such a unique experimental platform.

Our work is a stepping stone to build more effective fault toler-
ance schemes for space systems. Our work may be instrumental to
evaluate the impact of faults on the functionality of space systems,
and to explore the energy overheads of fault tolerance schemes.
Also to that end, we release the entire dataset we use to obtain the
results described in this paper for others to build upon [6].

2 Background and Related Work
We start with providing background information in nano-satellite
designs and proceed by presenting related work across three areas.
First, we survey research works that perform fault distribution ex-
periments in LEO and contrast them against our efforts. Second,
we report on research involving radiation testing, which is an al-
ternative to testing in space. Third, we discuss existing literature
on fault injection as an instrument to validate fault models.

2.1 Faults and Fault Tolerance
Faults are categorized into three classes depending on their fault
duration. Transient faults last for one clock cycle [26]. Intermittent

faults last for a longer period of time [26]. Permanent faults last
indefinitely until action is taken to repair the system [26].

Fault models can be described on different levels. For example,
a fault model described on the transistor level includes shorts and
opens in transistors, and coupling between circuit nodes [7]. We
focus more on the gate and functional levels. Gate level fault models
include the stuck-at fault model, where a bit is stuck at 0 or 1
regardless of what value is written into it. Functional level fault
models are further categorized into fault models for functional
blocks (such as adders), and fault models for memory blocks [7].

Examples of types of faults that can occur in electronics are
Single Event Upsets (SEUs), where charged particles change the
state of a single bit [47, 48]; Single Event Functional Interrupt
(SEFI), where program instructions are executed incorrectly [31];
and single event latch-up (SEL), where a short circuit occurs within
a transistor causing it to enter a latch-up state where errors can
occur [51]. Multiple Bit Upsets (MBUs) are similar to SEUs but
multiple bits are flipped at the same time [47].

Staple fault handling techniques include re-execution, where a
system reexecutes a faulty operation until the fault disappears [48];
checkpoint/restart, where a system restores the state of the system
to a state prior to the fault, and then restarts execution [48]; and
data redundancy methods such as Hamming codes, where extra
parity bits are used to detect and correct faults [32].

Whenever redundancy is used for fault tolerance, fault detection
and correction often occurs through some form of voting. This can
occur in a bit-wise or word-wise manner. In bit-wise voting, there
is a voter for each bit in a word [39]. In word-wise voting, there is
a single voter for the entire word [39], which requires that at least
two inputs are correct in their entirety. Conversely, bit-wise voting
requires that for each bit, at least two bits are correct. Therefore,
bit-wise voting can still result in the correct result even if two
inputs have faulty bits, provided that these bits are not in the same
position. Word-wise voting does have some advantages, however,
since bit-wise voters may fail silently in specific cases, for example,
if two bits flip in the same position [39]. The word voter would
detect the words as different, successfully detecting a fault provided
that the two faulty words are not identical.

Due to unreliable channels, communications use fault tolerance
techniques. TCP (Transport Control Protocol) uses checksums for
error detection [29]. In the Internet of Things, more specialized
methods are used. For example, Wang et al. [58] use a method called
trace back, where timestamps are used to identify lost packets and
broadcasting is used to signal that packets were lost, so that the
transmitter can resend them.

2.2 Fault Experiments in LEO
Nano-satellites, such as CubeSats, represent a new breed of space
vehicle [54]. Unlike the monolithic satellite designs that dominated
space operations until the 2000s, nano-satellites offer cheaper op-
eration and allow flexible planning and mission management by
independent parties. These features fueled an increasing number
of nano-satellite deployments, especially in LEO, by a variety of
different subjects, including private companies but also hobbyists,
universities, and research institutions.

To reduce costs, nano-satellites employ COTS hardware [57]. As
a by-product of this design choice, COTS hardware also provides

Fault Tolerance in Space with Heterogeneous Hardware:
Experiences from a 68-day CubeSat Deployment in LEO

nano-satellites with more computing power compared to radiation-
tolerant hardware [43]. The construction of radiation-tolerant hard-
ware usually follows their COTS counterpart by several years, and
therefore lags in performance and efficiency [35].

In this area, closest to our work is the work of Quinn et al. [45].
They deploy a satellite in LEO equipped with a Virtex-4 FPGA to
measure fault distributions. Unlike our work, they do not explore
the tradeoff between fault tolerance and resource consumption,
such as comparing TMR against not using redundancy, or bit-wise
voting against word-wise voting.

D’Alessio et al. [17] deploy four different SRAM memory chips
in LEO orbit for three years. Comparing the fault rates of different
memory chips in LEO is an important, but orthogonal problem
compared to our work, which focuses on investigating the validity
of fault models and comparing fault tolerance techniques.

Lovellette et al. [35] compare the use of an RH-3000 radiation-
hardened (RAD-hard) processor against an IDT-3081 COTS proces-
sor in LEO. The work bears similarities to ours, such as the use
of COTS hardware and the choice of benchmarks, yet we use a
different class of device. We also compare different fault tolerance
techniques running on the same, rather than different hardware.

2.3 Radiation Testing
Unlike deploying satellites to study fault and error distributions,
which is costly and time consuming, radiation testing exposes the
system to radiations in a controlled environment that approximates
the radiation environment in space. The crux of the problem is
how close is this approximation, given the general lack of precise
information on radiation in outer space.

Duhoon et al. [20] perform radiation testing of different micro-
SD cards at nine radiation intervals, with a focus on total ionizing
dose. Damkjar et al. [18] perform radiation testing of four different
microcontrollers. Unlike their work, we compare different imple-
mentations on the same chip, written either in a hardware descrip-
tion language and running on PL resources or written in C and
running on a regular multi-core SoC.

2.4 Fault Injection
Fault injection is a technique where faults are intentionally pro-
grammed into the system to evaluate its behavior when faults do
occur [42]. The fault injections mirror the fault model, specifying
what to inject, where, and when [36].

Mao et al. [37] develop a fault injection platform for an FFT algo-
rithm [60] implemented on a Kintex-7 FPGA. They call “essential”
bits the ones that are part of the design, that is, bits that are con-
figured on the FPGA as part of the bitstream. Critical bits are such
that if they flip, they cause a functional failure of the design [33].
For example, if a flipped bit causes the device to freeze, then that
bit is considered critical. Through fault injection experiments, the
authors find that 25.5% of the essential bits are also critical bits. The
distinction between essential and critical bits is key for our work.
We only detect faults that occur in critical bits. Due to resource con-
straints and platform limitations, we can only detect faults through
the manifestation of an incorrect output (an error).

Sari and Psarakis [50] develop a generalized fault injection plat-
form. They test three algorithms and find that FFT experiences the

Table 1: Goals and corresponding design choices.
Goal Design choice
Validity of different fault models One voter is fault-tolerant with respect to single

fault model, another one is not
Compare SoC against PL One SoC core uses a software implementation, a

PL unit uses an HDL-based implementation
Use TMR or no redundancy Use three PL units to compute the same algorithm
Compare different voters Utilize bit-wise voters, determine in post-

processing if word-wise voting yields same result
Compare different encodings Use an additional PL unit to compute FFT using

floating-point, other PL units use integers
Impact of ECC memory Store output data in both ECC and non-ECC

memory
Location of faults Use additional voters to process intermediate re-

sults of FFT algorithms
Frequency of faults Use an FFT PL unit to run at significantly faster

rate in comparison to the rest

highest fault rate among the tested algorithms, which prompts us
to use that as well as the key benchmark in our study, as it rep-
resents a challenging case. Villata et al. [56] develop a technique
for injecting faults into the configuration bitstream. The benefit of
their approach is performance, since both the fault injection and
the verification are performed on-device. We do not inject faults but
rather measure true faults in space. We do utilize our own on-device
verification approach to check whether the real-world fault yield
an error, in addition to off-device verification. We cannot rely solely
on on-device verification in real scenarios, as the verification itself
may be faulty.

A benefit of fault injection is that it allows for testing to scale.
For example, Adamu-Fika and Jhumka [8] perform nearly a million
fault injection experiments. The disadvantage of fault injection
is that the types of faults that can be injected are limited to the
fault model. If the fault model is not representative of real systems,
then the fault injection results would not accurately reflect what is
observed on real systems. This further demonstrates the importance
of performing experiments in real conditions, as we do.

3 Experimental Platform
We use an Arty Z7-20 board [1], as it is equipped with PL resources
similar to traditional FPGA chips such as the Artix-7 but it also
comes with a dual-core ARM Cortex-A9 SoC. The PL runs at 100
MHz, while the ARM SoC cores run at 650MHz. The A9 SoC enables
comparisons between Verilog-based implementations and regular
software implementations.

3.1 Design Rationale
To detect the presence of faults to critical bits, we periodically
provide a fixed input signal to a deterministic algorithm. Since the
input signal is fixed and the algorithm is deterministic, the output is
the same every time. Variations from the expected outputs are due
to faults to critical bits. Similar to existing work [37, 50], we choose
Fast Fourier Transform (FFT) as the deterministic algorithm.

Tab. 1 lists the goals of our work and the corresponding design
choices. We derive the different functional units in Fig. 1 from these
choices. The units include a bookkeeping SoC core, an FFT SoC core,
five FFT PL cores, several voters of different types, and an increment
core. The FFT SoC core allows us to compare the performance of a
software implementation against the performance of the PL cores.
Voters are explained in more detail next. The bookkeeping SoC core

El Yaacoub et al.

Programmable logic

SoC

Bookkeeping core

FFT ARM core

Memory

FFT PL core 0

FFT PL core 1

FFT PL core 2

FFT fast PL
core

Simple voter

Single fault
tolerant voter

FFT floating
point PL core

Intermediate
stages voters

Increment core

Figure 1: Hardware/software architecture.

collects the data produced by all the other cores and transmits it to
the satellite’s on-board computer, explained next. To transmit the
data, the bookkeeping core needs to convert the data from floating-
point or integer to strings of characters. Differently, the increment
core is a counter that counts up every second. We use it to compare
the fault rates of components that use less PL resources. We also
use the increment core to evaluate the use of data redundancy, as it
outputs its value four times per execution.

Tab. 2 shows the resource usage in the PL of the different cores.
The design as a whole uses 45,684 look-up tables and 54,980 regis-
ters. The PL has a total of 53,200 look-up tables and 106,400 registers.
Differences among identical cores, such as the three FFT PL cores,
are likely due to different routing and placement. Furthermore, the
first instance of a core can include some shared components, which
explains why FFT PL core 0 uses more look-up tables.

We compare the measured output to the expected output in three
different ways. First, we compare the measured output using the
bookkeeping core against the expected output stored in its memory
beforehand. Secondly, since the three PL cores in Fig. 1 execute the
same algorithm at the same rate, their outputs should be exactly
identical. The bookkeeping core compares them against each other.
These comparisons form a coherence check to ensure both the
bookkeeping core and the different units are functioning correctly.
Thirdly, a communication device sends the output data to Earth,
where we perform a further comparison in a post-processing stage.
The different comparisons provide as much information as possible
to locate faults, being either in the PL cores, in the bookkeeping
core, or during communication back to Earth.

3.2 Benchmark(s)
We use three different FFT algorithm implementations, correspond-
ing to the three different FFT algorithms part in the design of Fig. 1.
One implementation is written in Verilog using 16-bit integers, one
implementation is written in Verilog using 32-bit floating-point
data, and one implementation is written in C using 16-bit integers.
We use a publicly available Verilog implementation [2] based on

Table 2: PL resource usage per PL functional unit. Note that
this does not include units running on the SoC cores.

Functional unit Look-up tables Registers
FFT PL core 0 1,726 1,496
FFT PL core 1 1,358 1,495
FFT PL core 2 1,353 1,495
FFT fast PL core 1,371 1,397
FFT floating-point PL core 14,181 20,163
Increment core 2 33

FFT module

x_real[i]

x_imag[i]

x_real[i+1]

x_imag[i+1]

Next flag

y_real[i]

y_imag[i]

y_real[i+1]

y_imag[i+1]

Next out flag

Figure 2: FFT inputs and outputs per clock cycle.

A

C
B

O

(a) Simple voter.

A
B

OMux
C

(b) Fault-tolerant voter.

Figure 3: Voter designs.

the work by Milder et al. [38]. This is radix-2 with a transform size
of 64. The C implementation is mixed-radix [12].

Fig. 2 shows the inputs and outputs of the FFT algorithms written
in Verilog. Two complex numbers are input and output at each clock
cycle. There are also two binary flags called next and next_out that
are set to one when there is a vector of inputs or outputs generated.
The next flag indicates that an input vector of 64 complex numbers
is streaming into the FFT unit starting in the next clock cycle. The
next_out flag indicates to receiving unit that an output vector of 64
complex numbers streams out starting in the next clock cycle.

We choose different execution rates. The three integer PL cores
and the floating-point PL core are given a new input once per second.
We use the same rate for the SoC implementation An additional
PL core, called “fast” in Fig. 1, executes once per millisecond. This
unit provides a much finer-grained sampling of the possible faults.
Hardware limitations of the CubeSat we deploy, explained later,
prevent us from running all cores at this rate.

3.3 Voters
To locate the source of a fault, we place voters at the intermediate
stages of the FFT algorithm aswell. The 16-bit integer FFT algorithm
is a pipeline of 18 stages. We place intermediate voters at the inputs
(stage 0), at the outputs of stages 1, 3, 5, 8, 10, 12, and 15, as well
as at the final output (stage 17). We use the intermediate voters to
pinpoint where in the pipeline the fault originates, using a compact
encoding of fault locations we explain next.

We implement two different types of voters. One type of voter,
called “simple”, is based on the schematic in Fig. 3(a). This design
provides majority voting but is not fault-tolerant per se. The other
voter design, shown in Fig. 3(b) and operating in parallel to the
simple voter, provides majority voting but is also fault-tolerant
against the single fault model. Specifically, it can tolerate one fault
in the voter, provided none of the inputs are faulty, or tolerate one
fault in the inputs, provided the voter is not faulty. This design is
based on the work by Ban and de Barros Naviner [10]. Both voters
operate as bit-level voters. To compare bit-wise voting with word-
wise voting, we also evaluate the output vectors from each FFT unit
during post-processing to check if word-wise voting would also
yield the correct output.

Fault Tolerance in Space with Heterogeneous Hardware:
Experiences from a 68-day CubeSat Deployment in LEO

Table 3: Different outputs sent by the bookkeeping core.

Data Description
Vector Outputs (128-element vectors)

FFT 0-2 Vector output (16-bit int) for FFT PL core 0-2
Single fault voter Vector output (16-bit int) for fault-tolerant voter
Simple voter Vector output (16-bit int) for simple voter
ARM core FFT Vector output (16-bit int) for FFT ARM core
FFT 0 no ECC Vector output (16-bit int) for FFT PL core 0 stored with-

out ECC
FFT float Vector output (32-bit floating-point) for FFT floating-

point PL core
Increment Core Output (4-element vector)

Increment output Vector output (32-bit int) for increment core
Fault Indicator Outputs

FFT fast fault output Fault indicator (32-bit binary) for FFT fast PL core
Fault out generator Fault indicator (32-bit binary) for FFT input stage
Fault out stages 2, 4, 6, 9,
11, 13, 16

Fault indicators (32-bit binary) for FFT stages 2, 4, 6, 9,
11, 13, 16

Fault out fault-tolerant
voter

Fault indicator (32-bit binary) for the FFT output from
the fault-tolerant voter

Fault out simple voter Fault indicator (32-bit binary) for the FFT output from
the simple voter

3.4 Data
We collect three sets of data, summarized in Tab. 3: vector outputs,
fault indicators generated by the voters, and timestamps.

The vectors are the outputs of the FFT algorithm produced by the
cores in Fig. 1, each composed of 64 complex numbers with real and
imaginary parts. At each clock cycle, two outputs are computed.

Fault indicators are 32-bit numbers computed each clock cycle
by the voters, including the intermediate ones. They provide a com-
pact encoding of information about the faults in the two complex
outputs produced at that stage of processing and at each clock cy-
cle. A compact encoding is necessary as storing and transmitting
down to Earth the entire vector output for all intermediate stages is
unfeasible due to scarce storage resources and available bandwidth.
The design of fault indicators is different depending on whether
they operate as part of the fast PL core or not.

The fault indicator for PL cores running at one second period is
split in two parts. Bits 0-15 correspond to the total number of faults
observed in the output from Fig. 2 generated in the current clock
cycle. Bits 16-30 encode an array of binary flags, each of which
is set to 1 if there is at least one fault in a specific location. The
locations correspond to a combination of which FFT unit (of the
three TMR units) and which output (of the four from Fig. 2) shows
a fault. Bit 31 is unused and always set to 0.

The fault indicator for the FFT unit running at 1 millisecond
is different because its output is not voted on. Instead, we route
the output to a comparison unit, which compares it to the correct
values stored in memory. This indicator pinpoints where and when
the first fault occurs when computing the full output vector, which
takes 32 clock cycles to compute. Bits 0-3 indicate where the fault
is from the four outputs in Fig. 2. Bits 4-10 bits indicate in which
clock cycle of the 32 the fault occurs. Bits 11-23 indicate the total
number of faulty bits. Bits 24-31 are unused and always set to 0.

Most of the PL memory buffers used to exchange data with the
regular SoC are equipped with ECC. The only exceptions are the
buffer storing the fault indicator data for the fast PL core and the
buffer storing the vector output for the FFT PL core 0. The former
must be much larger compared to its counterpart for the regular PL

(a) Prototype.

OBC+PDM
(master)

Arty Z7-20
(slave 0)

(slave 1)

(slave 2)

(slave 3)

Tartan
Artiebus Bus

pow
er_on

da
ta

(b) Layered design.

Figure 4: Experimental CubeSat platform.

cores due the higher execution rate. There are insufficient memory
resources in the PL to implement ECC for the larger buffer. Instead,
the latter does not use ECC intentionally, as it serves to compare
storing data with ECC and without.

We also collect timing information using a 325 MHz clock, since
the last time the platform booted. The timestamps serve to identify
when a fault occurs, and how long it takes for the fault to disappear.
Due to limitations of the CubeSat we deploy, we cannot obtain
absolute timing information, as explained later. The single fault
model states that only one fault can occur at a time. Relative times-
tamps are sufficient to verify whether the fault model is valid, in
that they allow to detect whether a fault lasts long enough to cross
two subsequent execution rounds.

3.5 Satellite
The orbital platform we deploy is the result of a larger effort in-
volving three academic institutions and a total of 50+ people at the
different stages of design, construction, launch, and operation. The
space vehicle, shown in Fig. 4(a), is built based on the 1Unit CubeSat
platform of EnduroSat [3], which provides roughly 18% more inter-
nal volume available than existing CubeSat prototypes, still within
the 1U form factor. The UHF Transceiver II module from EnduroSat
provides downlink communications to the Earth, by relying on the
SatNOGS [4] global network of satellite ground-stations for data
collection. The satellite has no active propulsion system.

The hardware aboard the satellite uses a layered master-slave
design, schematically shown in Fig. 4(b). The device at the bot-
tom serves as the satellite’s master On-board Computer (OBC). Its
design is centered on a space-rated version of IBM’s 6x86 CPU,
a 32-bit computing core featuring a superpipelined architecture
and hardware floating-point unit. Despite being an almost 30-year
old design, its space-rated version is still deployed on satellites of
various form factors as space software written for it withstood ex-
tensive testing using formal methods and throughoutmultiple space
missions [40, 53]. This is a primary example of how space-rated
hardware may lag behind modern COTS hardware. A dedicated
radiation-strength aluminum shield separates each of the slave
devices from each other and from the OBC.

Besides logging of primary mission-related parameters and gen-
eral bookkeeping, the software aboard the OBC controls a cus-
tom Power Distribution Module (PDM) integrated within the OBC
board. The PDM uses the energy coming from four CTJ30 CESI
Solar cells [5] to power the OBC. These panels feature up to 29.5%
efficiency and offer the largest possible effective cell area for 1U
CubeSats, ultimately providing up to 2.4 W per panel in LEO. Any
leftover energy is stored in a soft-reconfigurable supercapacitor

El Yaacoub et al.

array on the PDM itself, which can vary total capacitance according
to the net input power. This feature is crucial in the operation of a
resource-constrained nano-satellite, as input power from the solar
cells may vary widely as the orbit unfolds over time.

The OBC instructs the PDM to provide power to one or more
of the four slave devices onboard. These devices are programmed
by independent parties to perform various experiments under the
general goal of understanding the effect of the LEO environment
on COTS hardware. The Arty Z7-20 we use is one of these devices.
The OBC determines what device to power among the four slaves
depending on their individual energy figures and the amount of
experimental data output up to a given point, in an attempt to
ensure fairness of energy allocations. The slave devices relay data
to the OBC through a simplified version of the Tartan Artibeus
Bus [19] using a serial line.

We deploy the Arty Z7-20 board with minimal modifications,
including physically removing all USB, Ethernet, and HDMI con-
nectors and directly wiring the necessary lines to the bus. These
lines are enclosed within space-hardened enclosures. The OBC is
also similarly protected. Communication back to the Earth happens
using space-proven FCC protocols and extreme data redundancy.
Corrupted packets are filtered at the SatNOGS [4] global network as
soon as they fail one of the multiple redundancy checks employed
at the ground stations. This ensures that the faults we observe did
happen on the board itself and nowhere else, including during com-
munication back to the Earth. Also note that because of inherent
limitations of the Tartan Artibeus Bus [19], we cannot accurately
match absolute positioning information and global time, both avail-
able at the OBC, with the data produced by the Arty Z7-20 board.
The analysis that follows cannot make use of this information.

The satellite was launched on November, 4th 2024 using the Polar
Satellite Launch Vehicle of the Indian space research organization.
It was deployed at 732 km from the Earth with initial attitude and
velocity expected to ensure roughly three months of operation.
The initial estimates were far exceeded as the satellite remained
operational until the end of February 2025. The 68 day time span
we refer to is the time the PDM actually powered the Arty Z7-20
out of the 120+ days of satellite operation. Note, however, that the
data we ultimately collected does not correspond to 68 days of
continuous operation of the Arty Z7-20, as energy failures on the
Tartan Artiebus Bus and data corruption during communication
back to the Earth reduce the net amount of data we can rely on.

4 Results and Discussion
We receive the data in seven batches over the course of 68 days.
Each batch contains a variable number of data dumps produced by
the Arty Z7-20 board and transmitted over the Tartan Artiebus Bus.
Because of the platform limitations explained earlier, we cannot
determine a relative ordering among the dumps in the same batch.
We know, however, that all dumps in a batch temporarily precede
all dumps in a following batch. Based on timestamp information,
we determine that the Arty Z7-20 board rebooted at least four times
across different batches, likely due to power losses.

Note that our measurement platform does not detect faults, but
can only detect errors. These errors manifest as incorrect outputs
caused by faults. We reason about the faults that caused the errors

based on the errors we observe and the apriori information we have
available. This distinction is important when it comes to faults in
functional units, since the fault may be, for example, a bit flipping
in a look-up table for an intermediate pipeline stage, causing the
stage’s output to be incorrect, and hence the output of the final stage
also to be incorrect. We do not observe the values of the look-up
tables directly, however, but rather only the incorrect output(s).

Tab. 4 summarizes the observations we draw based on the data
we collect and their effects and implications, while also providing a
roadmap for the rest of this section.

4.1 Fault Patterns
We observe three types of errors in the data we collect:

(1) stuck-at-0 errors: where all bits in an output array element
are set to 0, so the final value of the array element is 0;

(2) bit flips: where one or multiple bits in an output array
element flip from 0 to 1 or from 1 to 0, but the value of the
array element is still not 0;

(3) string errors: corrupted or missing characters in the char-
acter representation of the outputs sent to the OBC.

Errors can belong to several categories at the same time. It may
be unclear whether an incorrect output is due to corrupted or miss-
ing characters in the string representation, or bit flips in the original
binary representation. Specific cases provide some clues: for exam-
ple, if 3.1415926 is incorrectly output as 3.14126, it is more likely
that ‘59’ was not output correctly in the string representation rather
than specific bits flipped in the binary representation that yield
exactly the latter number. Other cases are less obvious, especially
for integers, since their bit sequences can represent every integer
value within a specific range exactly. Therefore, as long as the string
representation is within that range and is an integer, we cannot
tell whether the error occurs in the string representation or in the
original binary representation.
By examining the nature of the faults, we can conclude that

Observation 1. The majority of the errors we find are bit flips
rather than stuck-at-0 errors.

Indeed, 80.5% of the errors in the data we collect are definitely
bit flips, while 19.5% of the errors are stuck-at-0 errors. This is
encouraging since bit flips are easier to correct than stuck-at-0
errors. Generally, incorrect outputs with stuck-at-0 errors bear no
relationship to the correct output, since all the bits in the array
element are set to 0 regardless of what is the correct original value.
If bit flips occur after the output is computed, then the incorrect
output is partially linked to the correct output. Techniques such
as Hamming codes can detect and correct bit flips, recovering the
correct output from the incorrect one.

We return to this discussion later when we examine the actual
number of bit flips we observe. Note also that this observation does
not consider string errors, since it is not always clear if an error is
a string error or of the other two types.
Looking at the overall number of errors in the data, we note that

Observation 2. The number of incorrect outputs is very small
compared to the total number of outputs but it is in line with the
expected error rates for COTS hardware in LEO.

Fault Tolerance in Space with Heterogeneous Hardware:
Experiences from a 68-day CubeSat Deployment in LEO

Table 4: Summary of observations, effects, and implications.

Observations Source Effects and implications

The majority of the errors are bit flips rather than stuck-at-0 errors. Observation 1 It is easier to detect and correct bitflips so data redundancy methods can be used.

The number of incorrect outputs is very small but around 2 orders of
magnitude larger than in radiation-hardened chips.

Observation 2 Fault tolerance schemes must be stronger to compensate.

No error survived two or more computation runs. Observation 3 Reeexecution with time gaps is a valid approach.

Errors did not occur at the same time in multiple execution units. Observation 4 TMR is a valid approach provided the fault does not occur after voting. Bit-wise and
word-wise voting yield the same result.

Most errors have 6-9 bits flips. Observation 5 Data redundancy methods that correct for 1 bit flip and detect 2 bit flips are not
sufficient.

Errors tend to occur in nearby bits more than would be expected by
random chance.

Observation 6 It would be beneficial to spread out the bits if possible, or to have data redundancy
schemes where redundancy bits are far from the data bits.

Most string errors are short-lived, within 1-3 seconds. Observation 7 Reoutputting data with a time gap may eliminate most errors.

Floating-point outputs are better suited towards fault tolerance be-
cause they have errors typically much smaller or much larger.

Observation 8 Reasonableness tests work well to detect errors that fall outside the range when floating-
point variables are used.

The increment core does not experience any errors. Observation 9 Functional units using fewer resources are less likely to experience faults.

The on-device fault detection did not register any faults. Observation 10 Faults occur after voting and after on-device fault detection.

We observe 236 incorrect data items out of a total of 31,713,044
data items. These items lead to 59 incorrect output vectors out of
a total of 247,760 output vectors. The data covers a time period of
35,710 seconds. Therefore, one incorrect output vector occurs every
605 seconds, and one incorrect element occurs every 151 seconds.

These error rates are seemingly much higher than existing liter-
ature [46], for example, reporting 3.83 SEUs per day. However, this
is expected since Quinn et al. [46] use an XQVR1000 FPGA, which
is radiation-hardened and built on 220𝑛𝑚 technology. In contrast,
our chip is not radiation-hardened and built on 28𝑛𝑚 technology.
Smaller process nodes are more susceptible to faults, and hence,
more likely to manifest errors [11]. The specific setting is also dif-
ferent, for example, as they deploy the satellite at a 560 km orbit
and also find a decrease in the rate of faults by 30% at 500 km.

More generally, Lovellette et al. [35] demonstrate that COTS
hardware experiences around 2 orders of magnitude more faults
than space-rated hardware. In the setting of Quinn et al. [46], this
would mean 383 SEU per day, which is roughly comparable with
the 572 incorrect data items per day we observe at a higher orbit.

This observation demonstrates the need for fault-tolerance tech-
niques when employing COTS hardware in space. We expect it
to hold for other COTS hardware, such as sensors. Errors are not
sufficiently rare that they can be ignored or handled with primitive
techniques such as watchdogs and periodic reboots [26]. Adding
support for automatically applying fault tolerance schemes to ex-
isting synthesis tools is arguably a necessity.
Next, we study the time distribution of errors, noting that

Observation 3. No error persists for more than a single execution.

We do find that every error is only visible in the execution where
it is detected first. As a result, we also observe no intermittent faults
lasting for longer than 1 s or 1 ms, depending on what PL core we
consider, and no permanent faults either, since otherwise, the error
would have persisted onto another execution. Intermittent and
permanent faults are harder to remedy than transient faults [25].

This observation shows that time redundancy methods are ef-
fective, such as executing multiple equivalent computations are
performed with some time gap between them. The gap should be

set long enough for the transient fault to disappear. Unfortunately,
we lack the data needed to determine how large of a time gap should
be used in our specific setting. An alternative approach may be to
immediately use the results of the potentially incorrect computa-
tion and take corrective actions later. Wang et al. [59] utilize such
an approach for sensor faults.
By examining the time and space distribution of faults we find that

Observation 4. There exist no cases of two or more units in a
TMR configuration experiencing errors within the same execution.

Crucially, this means that the single fault model is valid, so TMR
represents a viable fault-tolerance scheme that can effectively mask
faults. Observation 4 also means that bit-wise and word-wise voting
yield the same results. Bit-wise voting masks faults when two or
more units experience faults at the same time but in different bits,
which does not occur in the setting we consider. Observation 4
is beneficial for distributed sensor systems, since it means that
deploying three identical sensors with TMR provides fault tolerance.
Next, we study errors across multiple bits and also note that

Observation 5. Multi-bit flips are more common than single-bit
flips. The majority of the errors are caused by 6 to 9 bit flips, corre-
sponding to 20-30% of the bits in a variable.

This observation entails that the single-bit fault model is not
valid. Fig. 5 provides concrete evidence by showing the distribution
of the number of bit flips in the incorrect outputs. The data covers
only the three FFT PL cores, the FFT floating-point PL core, and
the simple and single fault-tolerant voters. We obtain these data by
comparing the outputs against the expected values. These numbers
affect what fault-tolerance schemes can be used, since many fault-
tolerance schemes work based on the assumption that a few, say
one or two, bits would possibly flip. For example, Hamming (7,4)
codes can correct 1 bit flip and detect up to 2 bit flips. This insight,
instead, prompts for much more capable schemes, for example,
codes that can detect and correct a large number of bit flips, up to
40% of the bits in a variable.

Observation 5 does not align with the work of D’Alessio et al.
[17], who find that the ratio of multiple cell upsets to single event

El Yaacoub et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 27
Number of Bit Flips

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Co
un

t

2 3

10
12

14

19 18
21 20

13
16

13

9

5

1 1 2 1 1

Figure 5: Number of bit flips in incorrect outputs. Most errors
have 6-9 bit flips.

upsets ranges from 4.2% to 22.1% depending on the memory chip
they test. It also does not match the work by Quinn et al. [45], who
find that 91% of events only affect one bit. D’Alessio et al. [17] only
look at memory chips and utilize memory reads and writes, while
we look at the outputs of functional units, utilizing FFT. Faults in
the execution or functionality are more likely to lead to multi-bit
flips than faults in basic memory I/O, because the former involves
more intermediate steps, where a fault in a bit in one of the steps
may compound into an error with several bit flips in the final output.
Quinn et al. [45] also use a 90𝑛𝑚 chip, which are less dense than the
28𝑛𝑚 chip we use. This contributes to our observation of a higher
proportion of multi-bit flips. Heidel et al. [27], for example, note
that double-bit error rates increase from 1.6% for a 65𝑛𝑚 SRAM
chip to 6% for a 45𝑛𝑚 SRAM.
Connected to the previous observation, we also find that

Observation 6. The majority of the incorrect bits are closer to
each other than would be expected for a random distribution.

We also checkwhether errors tend to occur in nearby bits, or tend
to be more spread out. We compute the Clark-Evans index [16] for
each error, and plot it in Fig. 6. The index compares the actual gaps
between errors with that of a randomly distributed set of errors.
It is used as a measure of the level of clustering. Values less than
one indicate that the errors are closer than would be for random
distributions, while values greater than one indicate that the errors
are further apart. The mean index is 0.837. The 95% confidence
interval is (0.790, 0.883).

Fig. 6 demonstrates that errors do tend to occur in nearby bits,
more than would be expected by random chance. This information
is useful for designing fault-tolerance schemes since it may be
beneficial to separate important bits from each other, such as the
redundancy bits. Furthermore, if sufficient memory is available, it
may be beneficial to store bits from the same variable at a distance.
This observation aligns with existing work [21].

We also study whether errors tend to occur in adjacent array
elements or not. Fig. 7 shows the sizes of contiguous groups of
errors. Most errors are of just one array element by itself. However,
many do occur in 2 or 3 adjacent array elements as well.

Finally, we investigate whether the voters can mask faults or not,
and if the single fault-tolerant voter is more effective than the simple
voter. Fig. 8 shows the distribution of errors in different output units.
The voters are not particularly more fault-tolerant than the FFT
outputs. The single fault-tolerant voter is slightly more effective
than the simple voter, but the difference is not significant, and the
number of errors that occur is too low to conclude whether what

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Classical Clark-Evans Index (R)

0
10
20
30
40
50

Fr
eq

ue
nc

y
Co

un
t

2 1
6

11

24 20

50

19 18

3
8

3 1 2 1 2 1 2 3 2

Random (R = 1)

Figure 6: Clark-Evans index of the incorrect outputs. Most er-
rors occur in nearby bits more often than would be expected
by random chance.

1 2 3 4 5 7 1011 16 18 23 30
Size of adjacent incorrect array elements

0
5

10
15
20
25
30
35

Nu
m

be
r o

f i
nc

or
re

ct

ar
ra

ys

32

11
8

1 1 1 1 1 1 13 3 3 4
1 1

Bit flips
Stuck-at-0

Figure 7: Errors in the number of adjacent array elements.
Most errors occur in a single array element, but several occur
in nearby array elements.

ARM
core

PL
core

0

PL
core

1

PL
core

2

Single
fault
voter

Simple
voter

FP
PL

core

Increment
core

Functional unit

0
25
50
75

100
125
150

Nu
m

be
r o

f
er

ro
rs

11 21 11 16 13 18

146 160

Figure 8: Errors in different output units. There is no signifi-
cant difference between the PL integer units.

we observe is really due to the voter. This indicates that the faults
may occur after execution, once the data is in the bookkeeping core,
i.e., after voting. It may also explain why we see no errors in the
data that was stored without ECC, since the faults likely occur after
the data is received by the bookkeeping core. Because faults occur
after execution and voting, the choice of voter does not matter.
Therefore, we do not have enough data to conclude whether the
single fault-tolerant voter is more effective than the simple voter.

We also observe no significant difference in the number of errors
between the SoC and PL implementations. This is another indication
that faults occur after execution.

4.2 Data Conversion Errors
As part of the processing pipeline on our platform, data is converted
to strings of characters at different stages. Converting to strings
allows us to more easily differentiate between errors that occur
during data transmission and other errors. This is because errors
in the string representation likely produce errors where invalid or
inapplicable characters are produced, such as a digit being presented

Fault Tolerance in Space with Heterogeneous Hardware:
Experiences from a 68-day CubeSat Deployment in LEO

0 10 20 30 40 50 60 70 80
Duration of Missing Data (seconds)

0
5

10
15
20
25
30
35

Nu
m

be
r o

f t
im

e
ga

ps

38

641 111 11 2 2 1 1

Figure 9: Time gaps between data.Most time gaps are between
1 and 3 seconds.

0 10 20 30 40 50 60 70 80 90 100
Percentage of Outputs Received (%)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f i
nc

or
re

ct
Ar

ra
ys

14 15
8 8 12 11 13 17 12

71

Figure 10: Number of times the output array is missing ele-
ments with the fraction of the output array produced. The
majority of the output array is produced correctly.
as a letter. In this case, it is clear that the error occurred in the string
representation, allowing us to more closely pinpoint when the fault
occurred. If we keep the data as integers or floating point data, we
lose that ability because any bit flip in an integer or floating point
number leads to another valid integer or floating point number,
whereas a bit flip in a string may lead to a letter or other invalid
characters rather than a number.

Observation 7. String errors are usually short and usually affect
few elements in an output vector.

To investigate string errors, we find gaps in the data where no
data is produced as reported by the logs we collect. We do so using
timestamps. Since most of our functional units have an output rate
of once a second, we check whether there are gaps in the data
larger than that. We plot those and their frequencies in Fig. 9. The
majority of string errors last between one and three seconds.

Some string errors do not manifest as time gaps, but rather
as corrupted data. Therefore, it is not sufficient to merely check
the time gaps. We also check whether the entire output array is
produced, since the output is of a fixed size. Specifically, 282,952
output arrays are produced correctly while 181 are not. We plot
the cases where arrays are produced incorrectly in Fig. 10. Most of
the time when data is missing, the majority of the elements in the
array are correctly produced. There are a few cases though where
very few elements in the array are correctly produced.

These results are beneficial, since repetition of data with some
time gap can be used to tame these errors. Such repetition can be
used in distributed sensor systems by having the sensors repeat the
data several times with a time gap.

4.3 Floating-point and Integer Data
We examine how faults affect the accuracy of data encoded either
as floating-point or integer data and note that

0 5 101520253035404550556065707580859095
Percentage of Bits Flipped

0
10
20
30
40
50

Co
un

t

9 6 7

33

15

48

31

1312
3 1 2 3 4 2 1

Figure 11: Percentage of bits flipped in the faulty outputs,
organized in 5% bins. This includes both 16-bit integers and
32-bit floating-point data. Most errors flip 20-30% of the bits
in a variable.

0 20 40 60 80 100 120 140 160 180 200
SMAPE Error (%)

0
25
50
75

100
125
150
175
200

Fa
ul

ty
 o

ut
pu

ts

2
121

2
91

1 1
2

2

2

1 1
1
1 21

2 1
1 12

21
12

213
12

1
58
1

16-bit Integer
32-bit Floating-point

Figure 12: SMAPE of different errors between the floating-
point and integer outputs. Floating-point output errors are
typically smaller than integer output errors.

Observation 8. When faults occur in floating-point data, they
tend to cause either much smaller or much larger errors than faults
in their integer counterpart.

We plot the SymmetricMeanAbsolute Percentage Error (SMAPE)
between correct and incorrect outputs when using floating-point
or integer encoding in Fig. 12. We plot SMAPE instead of the per-
centage error because the latter is not defined when the correct
value is 0, which we see often. We compute SMAPE as

2|𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 |
|𝑎𝑐𝑡𝑢𝑎𝑙 | + |𝑐𝑜𝑟𝑟𝑒𝑐𝑡 | × 100% (1)

and evaluate that as zero if the denominator is zero, which only
occurs when both values are zero. SMAPE has an upper bound
of 200% and errors larger than 100% indicate substantial errors
where the error is larger than the mean of the magnitudes of the
correct and actual values. We find that the majority of the errors in
floating-point data deviate from the correct value by less than 5%.
The majority of errors in integers incur much larger percentage
differences, in comparison.

Since we have too few data points to evaluate the general impact
of using floating-point and integer data, we perform a fault injection
experiment by randomly injecting faults into the floating-point and
integer vector outputs. Fig. 11 shows the percentage of bits flipped
as a percentage of the total number of bits per array element.We use
Fig. 11 as an indication that data resembles a Poisson distribution
with the largest peak at around 25% and use this distribution to
inject faults at random places in an output vector that is the same
as the correct output vector in the 16-bit PL FFT computation.
However, we use 32-bit integers instead of 16-bit ones for this
experiment, so that both encodings have the same number of bits.

El Yaacoub et al.

0.0 12
.5

25
.0

37
.5

50
.0

62
.5

75
.0

87
.5

10
0.0

11
2.5

12
5.0

13
7.5

15
0.0

16
2.5

17
5.0

18
7.5

20
0.0

SMAPE Error (%)

0
50000

100000
150000
200000
250000
300000

Fr
eq

ue
nc

y

167

12474
61

3889
58

3584

32

1860
21

1328
28

3517

39

1074
62

1259
70

1130

70

4178
74

1289
97

1064

126

1583
155

2312
351

6185

185874

58967
68715

145431

Integer
Float

Figure 13: SMAPE in fault injection experiments in floating-
point and integer data.

1e
-6

1e
-4

1e
-2 1e

0
1e

2
1e

4
1e

6
1e

8
1e

10
1e

12
1e

14
1e

16
1e

18
1e

20
1e

22
1e

24
1e

26
1e

28
1e

30
1e

32
1e

34
1e

36
1e

38
1e

40

Absolute Error (Log Scale)

0

100000

200000

300000

Fr
eq

ue
nc

y 22510935776

367

65923
1707

62473
7901

15963

49235

13565
196790

653113790
859148614346

4247143316971
463337523078

459325611793
1535493

Integer
Float

Figure 14: Absolute error in fault injection experiments in
floating-point and integer data.

We show the results in Fig. 13 and Fig. 14. Unlike our results
based on experimental data, this time the majority of the faults lead
to significant errors in both floating-point and integer data. This
inconsistency may indicate that the faults on the satellite occur in
the string representation of the data rather than in the binary one.
They may be string faults, which would yield outputs closer to the
correct output in the case of floating-point numbers compared with
integers, as the majority of the characters in floating-point outputs
are to the right of the decimal point.

We also find that the number of fault injections with errors
smaller than 12.5% is higher for floating-point data than integers.
This is instead coherent with our experiments results, where we
find that the floating-point data are generally more fault-tolerant.
Fig. 14 also shows that floating-point errors exist across the range of
possible values, while integer errors are concentrated within eight
orders of magnitude of the correct value. These values are expected,
since floating-point numbers have a larger range of possible values
than integers. Most integer errors are concentrated from 106 to 108.

Comparisons between the fault tolerance of floating-point and
integer or fixed-point data are prominent in machine learning lit-
erature. Syed et al. [55] find floating-point data to be more fault-
tolerant, but they only compare 32-bit floating-point with 4-bit
fixed-point data. Elliott et al. [22] perform fault injection on floating-
point data and find that 90% of the absolute errors are less than or
equal one, while around 9% produced non-numeric values. Unlike
us, they operate on double-precision floating-point data, which
explains the higher percentage of small errors.

In our experiment, any bit flip in the exponent causes huge errors
while bit flips in the 20 least significant bits in the mantissa cause
very small errors. We demonstrate this in Fig. 15, where we choose
the number 1000 as an example of a number within our range of
values and compute errors caused by flipping various bits. Errors
within 5% are considered small. The exponent is 25% of the bits
in single-precision but only 17% of the bits in double-precision.
Therefore, it is expected that the percentage of errors less than 1 is
lower in our experiments than in those by Elliott et al. [22].

Therefore, we recommend using floating-point arithmetic for
computations, whenever the corresponding processing overhead

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

32 28 24 20 16 12 8 4

Small errors ≤5% with 1000Large errors >5%
 with 1000

Sign bit Exponent Mantissa

Small errors
≤5% with 1000

Large errors >5% with 1000

Figure 15: Floating-point (top) and integer (bottom) binary
representations showcasing bits that cause large errors. The
numbers above the binary number show the bit indices.

is tolerable, since faults in floating-point units more often yield
small or (very) large errors, as shown in Fig. 14. Applications that
can tolerate noisy data may perform effectively despite the faults
causing small errors. A primary example is that of machine learn-
ing pipelines, which are robust to limited data errors in the first
place [23].When errors are large, they are easy to detect instead [49],
for example, by carefully defining the correct data range and using
reasonableness tests [49]. Any value outside that range is consid-
ered incorrect. One scenario where we recommend using integers
is for applications where the data range does not intersect with the
range from 106 to 108. In this case, integers may actually be more
suitable, since the majority of their errors fall within that range,
and therefore, reasonableness tests would be very effective.

4.4 Increment Core Errors
Out of the entire data we process, we also note that

Observation 9. The increment core experiences no errors.

To check errors in the increment core, we must take into account
that string errors or missing outputs may make it appear as if there
is an error. This occurs if, due to a string error, the increment core
output is not produced. To deal with this, we rely on the fact that
the increment core generates a new output every second. Therefore,
we can use the timestamp of the data to check whether any of the
increment outputs had failed to be output before, and what should
be the current output of the increment core. We find 40 cases where
this adjustment is necessary but no errors in the increment core.
This result is consistent with Fig. 8. There, we record 160 errors.
Since the increment core generates four values per output, and there
are 40 cases where the increment core output was not produced,
these 160 (40 ∗ 4) mismatches are completely accounted for and
caused by the missing increment core outputs.

Therefore, all errors in the increment core are due to string errors
rather than errors in the core itself. This is likely due to the smaller
size of the increment core, as shown in Tab. 2, consuming 2 look-up
tables and 33 registers whereas the FFT PL cores each consume
around 1,300 look-up tables and 1,500 registers. These results pro-
vide evidence that functional units consuming less resources are
less likely to experience faults, and hence, errors. Similarly, units
using less memory are less likely to experience faults.

4.5 On-device Error Detection
On-device error detection is split into two parts, error detection
in the bookkeeping core, and error detection using PL voters. We

Fault Tolerance in Space with Heterogeneous Hardware:
Experiences from a 68-day CubeSat Deployment in LEO

output specific messages when the on-device error detection is
triggered. We find no such messages in the data, leading to
Observation 10. The on-device error detection did not register
any errors during the experiment.

Lack of errors detected by the bookkeeping core may be due to
faults in the bookkeeping core error detection or due to the faults
not being detectable. The former is unlikely since we never register
any error for the duration of the experiment. As for the latter, the
bookkeeping core detects errors if the fault occurs within a specific
time window, from the start of the execution of an input burst to
the point at which the output is checked.

For the off-device error detection to detect an error, the fault
must occur before the data is sent over the bus. This time window
is smaller than the one for the bookkeeping core. Therefore, the
fact that errors occurred in the off-device error detection, but not
the on-device error detection indicates that the error is likely not
linked to the time window, but rather occurs in the transmission of
the data over the bus.

As for error detection using PL voters, the lack of errors detected
may be due to the fact that the voters are not functioning correctly
or may be an indication that no faults occur in the execution stage.
If no faults occur in the execution stage, then that explains why
we see no benefit to using either the simple voter or the single
fault-tolerant voter. Furthermore, the fact that the voter output
experienced errors when none of the individual three units did, also
supports this hypothesis.

Certain functional modules are only checked using on-device
error detection. These include the pipeline stages, the FFT fast PL
core, and the FFT PL core 0’s output that was stored without ECC.
Therefore, if the on-device error detection is faulty, then we may
have missed errors in these modules too.
Generalizability. Reconfigurable devices are becoming common in
space. Since these devices share many of the same building blocks
with our experimental platform, that is, a general purpose SoC
with reconfigurable resources, we expect that some of our findings
are relevant towards devices beyond SoCs with programmable
logic. Furthermore, our results determine that faults likely occur
after execution. Therefore, we expect similar errors to occur with
other types of hardware accelerators, such as ASICs. These errors
occurred with the second ARM core, demonstrating that moving
from reconfigurable to regular hardware still produces the errors.

Observation 9 demonstrates that fault rates of modules imple-
mented in programmable logic depend on the resource usage. When
it comes to the reliability of the on-device error detection methods,
we can compare the resource usage of the error detection modules
with the execution modules. The integer FFT modules use around
1300-1700 look-up tables while the floating point one uses around
14,000. The voter uses around 350, and the modules to compute the
fault indicator each use 65. Therefore, we expect the reliability of
the on-device error detection to be around one order of magnitude
higher than the integer FFT modules and two orders of magnitude
higher than the floating-point FFT module.
5 Lessons Learned
The experiments we report on represent one of the very few at-
tempts at designing, implementing, and deploying a fault measure-
ment platform in space [17, 35, 44, 45]. Such a goal is arguably

challenging per se; worse, making our device co-exist with the rest
of the hardware aboard the CubeSat complicated matters. Moreover,
unlike more conventional systems where multiple design iterations
are possible or run-time software updates allow adjusting parame-
ters, fixing bugs, or adding functionality, we essentially had a single
shot at this. In the following, we articulate key lessons we learned
from our experience, possibly useful for future attempts.
Energy budgeting. In our design, the time spent performing com-
putations was fairly small compared to the time waiting for data to
be transmitted or spent for the actual transmission. This reduced
the time that faults may possibly occur during the computation,
impacting the sampling time of the phenomena of interest.

Our design choice was intentionally conservative as we had
no estimates of the energy available while in orbit, because of
the inherent unpredictability of solar energy harvesting in space
and for the non-predictable distribution of energy by the PDM. In
hindsight, we might have pushed computation rates much higher.
This indicates that a more careful energy budgeting is required,
used to determine the highest computation rates one can afford.
Sharing data with the OBC. An aspect we could not study was
how to relate the observed faults with absolute time information
or the location of the satellite. The former would establish an exact
ordering of faults, allowing one to study whether different faults
are possibly correlated over time. Existing work also shows that
space radiation varies significantly between locations, even at the
same altitude [9]. For example, faults are more likely to occur over
the so-called South Atlantic Anomaly than in other areas [28].

Because of limitations of the OBC and the Tartan Artibeus Bus,
communication was unidirectional from the Arty Z7-20 to the OBC.
As this happened asynchronously, there was no way to timestamp
the data we produced with absolute time information or to add
tags with the exact location where it was gathered. Enabling this
functionality would have required a radical re-design of the entire
platform, impacting both the OBC and all other devices onboard.
The time required for this would have pushed the launch at least
9 months later in time, besides increasing overall costs. Absolute
time information may be obtained, within reasonable accuracy,
with a real-time clock. Location information, however, requires
sharing data with the OBC, as equipping every different device
with a separate GPS receiver would unnecessarily complicate the
design and drastically increase energy consumption [41].
Data redundancy. As discussed earlier, faults did happen also
where we did not expect them, that is, in transferring the outputs
over the serial line. This represented a loss of precious experimental
information. Note that Fig. 9 also shows that whenever data was
not output over the serial line for some time, this usually happened
for a limited time period.

To address this issue, we recommend adding redundancy in
outputting the data. This may as simple as producing the same data
multiple times with some time gap, or using different serial lines.
This should decrease the number of faults occurring in situations
akin to those in Fig. 10. Such an approach does increase the size of
the data generated, yet the net amount of data transmitted down to
Earth should not increase significantly if some compression scheme
is applied. Provided no faults occur, duplicate data should be the
exact same as the original data, and thus be highly compressible.

El Yaacoub et al.

6 Conclusion
We reported on our experiments deploying a nano-satellite equipped
with heterogenous COTS hardware to measure fault and error dis-
tributions in LEO. We found that the single fault mode is valid,
which makes it possible to apply fault tolerance techniques such as
TMR. By the same token, we observe that the single-bit fault model
is not valid for COTS hardware in LEO and therefore conclude that
techniques such as Hamming (7,4) codes are not viable. The faults
we can detect are, moreover, mostly short-lived: in the absence of
real-time requirements, re-executing functionality over time may
naturally correct the faults. We finally note that the floating-point
encoding is, in a sense, more appropriate to build fault-tolerance
schemes in our setting, because fault detection is easier compared
to integer encodings.

Acknowledgments
This work was partially funded by the Knut and Alice Wallenberg
Foundation through the project UPDATE. It was also supported by
the Swedish Foundation for Strategic Research (SSF).

References
[1] [n. d.]. https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/
[2] [n. d.]. https://www.spiral.net/hardware/dftgen.html
[3] [n. d.]. https://www.endurosat.com/
[4] [n. d.]. https://www.satnogs.org
[5] [n. d.]. https://satsearch.co/products/endurosat-1u-cubesat-solar-panel
[6] 2025. Satellite dataset. https://nanosat.neslab.it
[7] J.A. Abraham and W.K. Fuchs. 1986. Fault and error models for VLSI. Proc. IEEE

(1986).
[8] F. Adamu-Fika and A. Jhumka. 2015. An investigation of the impact of double

single bit-flip errors on program executions. DEPEND (2015).
[9] G. D. Badhwar. 2000. Radiation Measurements in Low Earth Orbit: U.S. and

Russian Results. Health Physics (2000).
[10] T. Ban and L. A. de Barros Naviner. 2010. A simple fault-tolerant digital voter

circuit in TMR nanoarchitectures. In NEWCAS.
[11] R.C. Baumann. 2005. Radiation-induced soft errors in advanced semiconductor

technologies. IEEE Transactions on Device and Materials Reliability (2005).
[12] M. Borgerding. 2024. Mborgerding/Kissfft. https://github.com/mborgerding/

kissfft
[13] F. Brosser et al. 2014. Assessing scrubbing techniques for Xilinx SRAM-based

FPGAs in space applications. In FPT.
[14] G. Brunetti et al. 2024. COTS Devices for Space Missions in LEO. IEEE Access

(2024).
[15] M. L. Bushnell and V. D. Agrawal. 2002. Fault Modeling.
[16] P. J. Clark and F. C. Evans. 1954. Distance to Nearest Neighbor as a Measure of

Spatial Relationships in Populations. Ecology (1954).
[17] M. D’Alessio et al. 2013. SRAMs SEL and SEU in-flight data from PROBA-II

spacecraft. In RADECS.
[18] S. E. Damkjar, I. R. Mann, and D. G. Elliott. 2020. Proton Beam Testing of SEU

Sensitivity of M430FR5989SRGCREP, EFM32GG11B820F2048, AT32UC3C0512C,
and M2S010 Microcontrollers in Low-Earth Orbit. In REDW.

[19] B. Denby et al. 2022. Tartan aArtibeus: A batteryless, computational satellite
research platform. In Small Satellite Conference.

[20] A. Duhoon et al. 2021. Total Ionizing Dose Tolerance of Micro-SD Cards for
Small Satellite Missions. Small Satellite Conference (2021).

[21] M. Ebrahimi et al. 2016. Low-Cost Multiple Bit Upset Correction in SRAM-Based
FPGA Configuration Frames. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (2016).

[22] J. Elliott, M. Hoemmen, and F. Mueller. 2016. Exploiting data representation for
fault tolerance. Journal of Computational Science (2016).

[23] A. Fawzi, S.M. Moosavi-Dezfooli, and P. Frossard. 2016. Robustness of classifiers:
from adversarial to random noise (NIPS).

[24] I.A.C. Gomes et al. 2015. Exploring the use of approximate TMR to mask transient
faults in logic with low area overhead. Microelectronics Reliability (2015).

[25] L. R. Gómez et al. 2014. Adaptive Bayesian Diagnosis of Intermittent Faults.
Journal of Electronic Testing (2014).

[26] S. Han, K.G. Shin, and H.A. Rosenberg. 1995. DOCTOR: an integrated software
fault injection environment for distributed real-time systems. In IPDS.

[27] D. F. Heidel et al. 2009. Single-Event Upsets and Multiple-Bit Upsets on a 45 nm
SOI SRAM. IEEE Transactions on Nuclear Science (2009).

[28] J.R Heirtzler. 2002. The future of the South Atlantic anomaly and implications for
radiation damage in space. Journal of Atmospheric and Solar-Terrestrial Physics
(2002).

[29] S. Iren, P. D. Amer, and P. T. Conrad. 1999. The transport layer: tutorial and
survey. ACM Comput. Surv. (1999).

[30] ISO Central Secretary. 2017. Systems and software engineering – Vocabulary.
Technical Report ISO/IEC/IEEE 24765:2017. International Organization for Stan-
dardization.

[31] A. Ju et al. 2021. Analysis of Ion-Induced SEFI and SEL Phenomena in 90 nm
NOR Flash Memory. IEEE Transactions on Nuclear Science (2021).

[32] U. K. Kumar and B. S. Umashankar. 2007. Improved Hamming Code for Error
Detection and Correction. In ISWPC.

[33] R. Le. 2012. Soft error mitigation using prioritized essential bits. Xilinx XAPP538
(v1.0) (2012).

[34] Z. Li et al. 2023. Efficacy of Transistor Stacking on Flip-Flop SEU Performance
at 22-nm FDSOI Node. IEEE Transactions on Nuclear Science (2023).

[35] M.N. Lovellette et al. 2002. Strategies for fault-tolerant, space-based computing:
Lessons learned from the ARGOS testbed. In IEEE Aerospace Conference.

[36] H. Madeira, D. Costa, and M. Vieira. 2000. On the emulation of software faults
by software fault injection. In DSN.

[37] C.A. Mao et al. 2018. An Automated Fault Injection Platform for Fault Tolerant
FFT Implemented in SRAM-Based FPGA. In SOCC.

[38] P. Milder et al. 2012. Computer Generation of Hardware for Linear Digital Signal
Processing Transforms. ACM Trans. Des. Autom. Electron. Syst. (2012).

[39] S. Mitra and E.J. McCluskey. 2000. Word-voter: a new voter design for triple
modular redundant systems. In VTS.

[40] L. Mottola et al. 2010. Anquiro: Enabling efficient static verification of sensor
network software. In ICSE Workshop on Software Engineering for Sensor Network
Applications.

[41] S. Narayana et al. 2020. Hummingbird: Energy efficient GPS receiver for small
satellites. In MobiCom.

[42] R. Natella, D: Cotroneo, and H. S. Madeira. 2016. Assessing Dependability with
Software Fault Injection: A Survey. ACM Comput. Surv. (2016).

[43] G. Pagonis et al. 2023. Increasing the Fault Tolerance of COTS FPGAs in Space:
SEU Mitigation Techniques on MPSoC. In International Symposium on Applied
Reconfigurable Computing.

[44] C. Poivey et al. 2003. In-flight observations of long-term single-event effect (SEE)
performance on Orbview-2 solid state recorders (SSR). In REDW.

[45] H. Quinn et al. 2012. On-Orbit Results for the Xilinx Virtex-4 FPGA. In REDW.
[46] H. Quinn et al. 2015. The Cibola Flight Experiment. ACM Trans. Reconfigurable

Technol. Syst. (2015).
[47] D. Radaelli et al. 2005. Investigation of multi-bit upsets in a 150 nm technology

SRAM device. IEEE Transactions on Nuclear Science (2005).
[48] F. Reghenzani, Z. Guo, and W. Fornaciari. 2023. Software Fault Tolerance in

Real-Time Systems: Identifying the Future Research Questions. ACM Comput.
Surv. (2023).

[49] G.K. Saha. 2005. Approaches to software based fault tolerance–a review. Com-
puter Science Journal of Moldova (2005).

[50] A. Sari and M. Psarakis. 2016. A fault injection platform for the analysis of soft
error effects in FPGA soft processors. In DDECS.

[51] J.R. Schwank et al. 2005. Effects of particle energy on proton-induced single-event
latchup. IEEE Transactions on Nuclear Science (2005).

[52] F. Siegle et al. 2015. Mitigation of Radiation Effects in SRAM-Based FPGAs for
Space Applications. ACM Comput. Surv. (2015).

[53] P. Stakem. 2004. Migration of an Image Classification Algorithm to an On-
board Computer for Downlink Data Reduction. Journal of Aerospace Computing,
Information, and Communication (2004).

[54] M.N. Sweeting. 2018. Modern Small Satellites-Changing the Economics of Space.
Proc. IEEE (2018).

[55] R. T. Syed et al. 2021. Fault Resilience Analysis of Quantized Deep Neural
Networks. In MIEL.

[56] I. Villata et al. 2014. Fast and accurate SEU-tolerance characterization method
for Zynq SoCs. In FPL.

[57] T. Villela et al. 2019. Towards the Thousandth CubeSat: A Statistical Overview.
International Journal of Aerospace Engineering (2019).

[58] K. Wang et al. 2020. Adaptive and Fault-Tolerant Data Processing in Health-
care IoT Based on Fog Computing. IEEE Transactions on Network Science and
Engineering (2020).

[59] X. Wang et al. 2021. Active fault tolerant control based on adaptive interval
observer for uncertain systems with sensor faults. International Journal of Robust
and Nonlinear Control (2021).

[60] Y. Xie et al. 2017. A novel low-overhead fault tolerant parallel-pipelined FFT
design. In DFT.

https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/
https://www.spiral.net/hardware/dftgen.html
https://www.endurosat.com/
https://www.satnogs.org
https://satsearch.co/products/endurosat-1u-cubesat-solar-panel
https://nanosat.neslab.it
https://github.com/mborgerding/kissfft
https://github.com/mborgerding/kissfft

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Faults and Fault Tolerance
	2.2 Fault Experiments in LEO
	2.3 Radiation Testing
	2.4 Fault Injection

	3 Experimental Platform
	3.1 Design Rationale
	3.2 Benchmark(s)
	3.3 Voters
	3.4 Data
	3.5 Satellite

	4 Results and Discussion
	4.1 Fault Patterns
	4.2 Data Conversion Errors
	4.3 Floating-point and Integer Data
	4.4 Increment Core Errors
	4.5 On-device Error Detection

	5 Lessons Learned
	6 Conclusion
	Acknowledgments
	References

